Improved estimates of ocean heat content from 1960 to 2015

نویسندگان

  • Lijing Cheng
  • Kevin E Trenberth
  • John Fasullo
  • Tim Boyer
  • John Abraham
  • Jiang Zhu
چکیده

Earth's energy imbalance (EEI) drives the ongoing global warming and can best be assessed across the historical record (that is, since 1960) from ocean heat content (OHC) changes. An accurate assessment of OHC is a challenge, mainly because of insufficient and irregular data coverage. We provide updated OHC estimates with the goal of minimizing associated sampling error. We performed a subsample test, in which subsets of data during the data-rich Argo era are colocated with locations of earlier ocean observations, to quantify this error. Our results provide a new OHC estimate with an unbiased mean sampling error and with variability on decadal and multidecadal time scales (signal) that can be reliably distinguished from sampling error (noise) with signal-to-noise ratios higher than 3. The inferred integrated EEI is greater than that reported in previous assessments and is consistent with a reconstruction of the radiative imbalance at the top of atmosphere starting in 1985. We found that changes in OHC are relatively small before about 1980; since then, OHC has increased fairly steadily and, since 1990, has increasingly involved deeper layers of the ocean. In addition, OHC changes in six major oceans are reliable on decadal time scales. All ocean basins examined have experienced significant warming since 1998, with the greatest warming in the southern oceans, the tropical/subtropical Pacific Ocean, and the tropical/subtropical Atlantic Ocean. This new look at OHC and EEI changes over time provides greater confidence than previously possible, and the data sets produced are a valuable resource for further study.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Earth's energy imbalance since 1960 in observations and CMIP5 models

Observational analyses of running 5 year ocean heat content trends (Ht) and net downward top of atmosphere radiation (N) are significantly correlated (r ∼ 0.6) from 1960 to 1999, but a spike in Ht in the early 2000s is likely spurious since it is inconsistent with estimates of N from both satellite observations and climate model simulations. Variations in N between 1960 and 2000 were dominated ...

متن کامل

Earth’s Energy Imbalance

Climate change from increased greenhouse gases arises from a global energy imbalance at the top of the atmosphere (TOA). TOA measurements of radiation from space can track changes over time but lack absolute accuracy. An inventory of energy storage changes shows that over 90% of the imbalance is manifested as a rise in ocean heat content (OHC). Data from the Ocean Reanalysis System, version 4 (...

متن کامل

Seasonal variability of upper ocean heat content in Drake Passage

[1] Mixed-layer depth (MLD) is often used in a mixed-layer heat budget to relate air-sea exchange to changes in the near-surface ocean temperature. In this study, reanalysis heat flux products and profiles from a 15 year time series of high-resolution, near-repeat expendable bathythermograph/expendable conductivity-temperature-depth (XBT/XCTD) sampling in Drake Passage are used to examine the n...

متن کامل

Ocean Heat Content Reveals Secrets of Fish Migrations.

For centuries, the mechanisms surrounding spatially complex animal migrations have intrigued scientists and the public. We present a new methodology using ocean heat content (OHC), a habitat metric that is normally a fundamental part of hurricane intensity forecasting, to estimate movements and migration of satellite-tagged marine fishes. Previous satellite-tagging research of fishes using arch...

متن کامل

Observing ocean heat content using satellite gravity and altimetry

[1] A method for combining satellite altimetry observations with satellite measurements of the Earth’s time-varying gravity to give improved estimates of the ocean’s heat storage is presented. Over the ocean the time-variable component of the geoid can be related to the time-varying bottom pressure. The methodology of estimating the ocean’s time-varying heat storage using altimetric observation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2017